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We discuss a phenomenological approach to the description of unstable vehicle motion on multilane high-
ways that explains in a simple way the observed sequence of the “free-flasynchronized mode- jam”
phase transitions as well as the hysteresis in these transitions. We introduce a variable called an order para-
meter that accounts for possible correlations in the vehicle motion at different lanes. So, it is principally due to
the “many-body” effects in the car interaction in contrast to such variables as the mean car density and
velocity being actually the zeroth and first moments of the “one-particle” distribution function. Therefore, we
regard the order parameter as an additional independent state variable of traffic flow. We assume that these
correlations are due to a small group of “fast” drivers and by taking into account the general properties of the
driver behavior we formulate a governing equation for the order parameter. In this context we analyze the
instability of homogeneous traffic flow that manifested itself in the above-mentioned phase transitions and gave
rise to the hysteresis in both of them. Besides, the jam is characterized by the vehicle flows at different lanes
which are independent of one another. We specify a certain simplified model in order to study the general
features of the car cluster self-formation under the “free flewsynchronized motion” phase transition. In
particular, we show that the main local parameters of the developed cluster are determined by the state
characteristics of vehicle motion only.

PACS numbgs): 45.70.Vn, 05.65+b, 89.40+k

[. INTRODUCTION. MACROSCOPIC MODELS FOR transition is essentially a multilane effect. Recently Kerner
MULTILANE TRAFFIC DYNAMICS [7—9] assumed it to be caused by a “Z”-like form of the
overtaking probability depending on the car density.

The study of traffic flow actually formed a novel branch ~ The synchronized mode is characterized by substantial
of physics since the pioneering works by |_|ghth||| and correlations in the car motion along different lanes because
Whitham[1], Richardg2], and, then, by Prigogine and Her- of the lane changing maneuvers. So, to describe such phe-
man[3]. It is singled out by the fact that in spite ofioti- Nomena a multilane traffic theory is required. There have
vated i.e., a nonphysical individual behavior of moving ve- been proposed several macroscopic models dealing with
hicles (they make up a so-called ensemble of “self-driven multilane traffic flow and based on the gas-kinetic theory
particles,” see, e.g[4—8)), traffic flow exhibits a wide class [15-20, a compressible fluid mod¢R1] generalizing the
of critical and self-organization phenomena met in physicappproach by Kerner and Kontser[22,23, and actually a
systems(for a review seq7-9)). Besides, the methods of model[24,25 dealing with the time-dependent Ginzburg-
statistical physics turn out to be a useful basis for the theolLandau equation.
retical description of traffic dynamid4.0]. All these models describe traffic flow in terms of the car

The existence of a basic phase in vehicle flow on multi-density p, mean velocityv, and, maybe, the velocity vari-
lane highways called synchronized motion was recently disanceé or we ascribe these quantities to vehicle flow at each
covered by Kerner and Rehbdrhi], impacting significantly lane « individually. In other words, the quantitigp,v, 6},
the physics of traffic as a whole. In particular, it turns outare regarded as a complete set of the traffic flow state vari-
that the spontaneous formation of moving jams on highway§b|es and if they are fixed then all the vehicle flow charac-
proceeds mainly through a sequence of two transitions: “frederistics should be determined. The given models relate the
flow — synchronized motiorn— stop-and-go patternf12]. self-organization phenomena actually to the vehicle flow in-
All the three traffic modes are phase states, meaning the§tability caused by the delay in the driver response to
have the ability to persist individually for a long time. Be- changes in the motion of the nearest cars ahead. In fact, let us
sides, the two transitions exhibit hysterelsig—14), i.e., for ~ briefly consider their simplified versiofef. [26,27]) which,
example, the transition from the free flow to the synchro-nevertheless, catches the basic features taken into account,
nized mode occurs at a higher density and lower velocity
than the inverse one. As follows from the experimental data dp  d(pv)
[11,13,14 the “free flow « synchronized mode” phase ot IX
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Here the former term on the right-hand side of E8), a  [hered,=dd(p)/dp]. As follows from Eq.(6) the instabil-
so-called pressure term, reflects dispersion effects due to th can occur when the delay time exceeds a certain criti-
finite velocity varianced of the vehicles and the latter one cal valuer, and for 7' <7, the homogeneous traffic flow is
describes the relaxation of the current velocity within thestable at least with respect to small perturbations. Moreover,
time 7’ to a certain equilibrium valugf{p, 8}. In particular,  the instability increment attains its maximumkat K.y, SO,

for special conditions are required for a wide vehicle cluster to
5 form [22,23,31,32 In particular, in the formal limitr'—0
v
Plpw,0b=po— o 3) from Eq. (2) we get
D dp
where 7 is a “viscosity” coefficient and the velocity vari- v="9(p)— o X’ (8)

anced is treated as a constant, we are confronted with the

Kerner-Konhaser model[22,23. In the present form the whereD=y,L* plays the role of the diffusion coefficient of
relaxation timer’ characterizes the acceleration capability ofyehicle perturbations. The substitution of E§) into Eq. (1)
the mean vehicle as well as the delay in the driver controljelds the Burgers equation

over the headwaysee, e.g.[28—-3(). The value of the re-

laxation time is typically estimated as~ 30 s because it is ap  dpdp)] &p

mainly determined by the mean time of vehicle acceleration ot + ax D—, 9
which is a slower process than the vehicle deceleration or the 2

dnver_ reaction to changgs in the headw‘?‘y- Th_e eqUIIIb“umwhich describes the vehicle flux stable, at least with respect
velocity U{p} _(here the fixed ve_locny variance is not di- to small perturbations in the vehicle density

rectly shown in the argument IDS".S chosen hy drivers keep- However, the recent experimental d@id —14,33 about

INg n mind the safety, the readiness for .“Sk' and the l?.ga{raffic flow on German highways have demonstrated that the
traffic regulations. For homogeneous traffic flow the equilib-

rium velocity24{p} = 9(p) is regarded as a certain phenom- characteristics of the multilane vehicle motion are more
- yUhp P 9 . P complex (for a review seg7-9]). In particular, there are
enological function meeting the conditions

actually three types of synchronized modes, the totally ho-
d9(p) mogeneous state, the homogeneous-in-speed state, and the
g <0 and pdp)—0 as p—pg, (4)  totally heterogeneous statgl]. The homogeneous-in-speed
P state especially demonstrates the fact that, in contrast to the

wherep, is the upper limit of the vehicle density on the road. free flow, there is no direct relationship between the density

Since the drivers anticipate risky maneuvers of distant car&nd flux of vehicles in the synchronized mode because their
also, the dependenddp} is nonlocal. In particular, it is variations are totally uncorrelatdd1]. For example, an in-

reasonable to assume that the driver behavior is mainly go\e'€ase in the vehicle density can be accompanied by either an

erned by the car density at a certain distant “interaction increase or decrease in the vehicle flux, with the car velocity

point” x,=x+L* rather than at the current one which being practically constant. As a result, the synchronized
a ) ; >

gives rise to a new term in E@2) based on the gas-kinetic mode corresponds to a two-dimensional region in the flow-

theory [16,17]. Here, for the sake of simplicity following density plane [p plang rather than to a certain ling

; ; : =3(p)p [11]. Keeping in mind a hypothesis by Kerner

[26], we take this effect into account by expandip@x . . o
+L*) and theri4{p} into the Taylor series and we write [8,9,34 apout the metas?abll'lty of each particular state in this
synchronized mode region it is natural to assume that there

L* dp should be at least one additional state variable affecting the

Uipt=9(p) —vo——, (5  vehicle flux. The other important feature of the synchronized

P mode is the key role of some cars bunched together and

wherev, is a certain characteristic velocity of the vehicles. traveling much faster than the typical ones, which enables us
Then linearizing the obtained system of equations with reo regard them as a special car grqag]. Therefore, in the

spect to the small perturbatio®, Sv <exp(t+ikx) we ob-  Synchronized mode the function of car distribution in the
tain that the long-wave instability will occur ifcf.  velocity space should have two maxima and we will call

[22,23,28) such fast car groups platoons in speed.
Anomalous properties of the synchronized mode have
T’(pﬁ;))2>voL* +7'0. (6) been substantiated also [iB3] using single-car data. In par-
ticular, as the car density comes to the critical valyef the
In the long-wave limit the instability increment Redepends  free flow > synchronized mode transition the time-headway
onkas distribution exhibits a short-time pedkt 0.8 3. This short-
—2r 2 . time headway corresponds tb." . platoons of some ve-
Rey=kT7'(p9,)" = (vol* + 7' 0)], ™ hicles traveling very fast—their drivers are taking the risk of
driving “bumper-to-bumper” with a rather high speed.
These platoons are the reason for the occurrence of high-flow
states in free traffic’{33]. The platoons are metastable and

and the upper boundaky,,, Of the instability region in thé
space is given by the expression

(p')? 1/2 their destruction gives rise to the congested vehicle motion
2 =P TP 1 [35]. In the synchronized mode the weight of the short-time
T | | (vol* + 7 6) headways is less; however, almost every fourth driver falls
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below the 1s threshold. In the vicinity of the free flow
—synchronized mode transition the short time-headways
have the greatest weight. In other words, at least near the
given phase transition the traffic flow state is to be charac-
terized by two different driver groups which separate from
each other in theelocity space and, consequently, in multi-
lane traffic flow there should be another relaxation process highway
distinct from one taken into account by the modBl(2). In

order to move faster than the statistically averaged car a FIG. 1. Transition region separating, e.g., the free-flow and syn-
driver should permanently maneuver pass by the cars mowhronized mode.

ing ahead. The meeting of several such “fast” drivers seems

to cause the platoon formation. Obviously, to drive in such d@ting transition regioriFig. 1) does not widen but keeps a
manner requires additional efforts, so, each driver needs $ertain thickness. Besides, it should specify the velociof
certain timer to get the decision whether or not to take partthiS region depending on the traffic phase characteristics.

in these maneuvers. Exactly the timeharacterizes the re- 11N€re is a general expression relating the transition region
laxation processes in the platoon evolution. It should be/€locity uto the density and mean velocity of cars in the free

noted that the overtaking maneuvers are not caused by tH@W and a developed car clustgr;, v and pei, v, re-
control over the headway distance and, thus, the correspongPectively, that follows from the vehicle conservatigt,
ing transient processes may be much slower than the driv&l@mely, the Lighthill-Whitham formula
response to variations in the headway to prevent possible
traffic accidents.

The analysis of the obtained optimal-velocity function Pel™ Pt

V(Ax) demonstrates its dependence not only on the headway gnecific model is to give additional relationships between
Ax but also on the local car density. So, in congested flowy,, quantitiess, p;, v; andpy, v, resulting from particular

the drivers supervise the vehicle arrangement or, at least, tiyetaiis of the car interaction. We note that a description simi-
to do this in a sufficiently large neighborhood covering sev-4; 1o Egs.(1) and (2) dealing solely with the external pa-

eral lanes. rameters{p,v} do not actually make a distinction between

Another unexpected fact is that the synchronized mode ig,e free.-fiow and congested phases and their coexistence is
mainly distinctive not due to the car velocities at dn‘ferentdue to the particular details of the car interaction

lanes being equal. In the observed traffic flow various lanes The free flow— synchronized motion transition is rather
did not exhibit a substantial difference in the car velocity

) . . imilar to aggregation phenomena in physical systems such
even in the free flow. In agreement with the results obtame(ils undercooled liquid when in a metastable phaseler-
by Kerner[11] the synchronized mode is singled out by .

: : . ooled liquid the transition to a new ordere@rystalling
smgll correlat|0n§ between_fluctuauons in the car “PW' Ve'phase goes through the formation of small clusters. Keeping
locity, and dengllty. The_re is only a strong correlation l;)e—ir.1 mind this analogy Mahnke and co-worké&7—39 have
tween the velocities at different lanes taken at the same tim roposed a kinetic approach based on a stochastic master

however, it decreases sufficiently fast as the time differencg, tion describing the synchronized mode formation that

gmreases.hByﬂcontragtather_e afre s':}ror;g Iorf1|g-t|me CoﬁTelat'?]rlfeals with individual free cars and their clusters. The cluster
etweer(wjt N OV; anl ﬁnsny r? rthe Lee %V.V lasf:/ve ;St T‘evolution is governed by the attachment and evaporation of
Ztop—ag "90 'Eo de. n these phases the vehicle flow directhy,q jygividual cars and the synchronized mode is regarded as
eEI)_?]n sbon the fensgy. h hronized q d hthe motion of a large cluster.
. eredy, the free flow, the synchronized mode, and the 1, jegcribe such phenomena in physical systems an ef-
jammed motion seem to be qualitatively distinct from ONege e macroscopic approach was developed, called the
anqther at the m|g:roscop|c.level. So, it IS _I|kely that to de'Landau phase transition thedd0], that introduces a certain
scribe mgcroscopmally traffic phase transmons'the set Of,th‘arder parameten characterizing the correlations, e.g., in the
state variablep,v, 6}, should be completed with an addi- 44,y arrangement. In the present paper following practically

“0“3' par_amete(or param_etel)sreflecting theinter_nal Cor  the spirit of the Landau theory we develop a phenomenologi-
relations in the car d}/‘nam|cs. In ('),ther WOI‘.dS, this pgrameteéal approach to the description of the traffic flow instability
has to be due to the “many-body” effects in the car interac-

o o Ivariabl h that ascribes to the vehicle flux an additioirgkrnal param-
gon n conérastl o sut(): Pxterna V"ﬁ”ahes as the rgefgn Cal eter which will be also called the order parameteand
ensity and velocity being actually the zeroth and first mo, oy gllows for the effect of lane changing on the vehicle

mentbs of thed“odne-partlc_le(’j’ d'Str('ijt'on functlo_n.bl'l'hu?, 'tffmotion. In this way the free flow and the congested phases
can be regarded as an Independent state variable of raflig, ., me in fact distinctive and solely the conditions of their

flow. The derivation of macroscopic traffic equations based,e,istence and the dynamics of the transition layer are the
on a Boltzmann-like kinetic approadl36] has also shown ; e

: " . . subject of specific models.
that there is an additional internal degrees of freedom in the
vehicle dynamics.

In any case a theory of unstable traffic flow has to answer,
in particular, to a question of why its two phases, e.g., the
free flow and the synchronized mode, can coexist and, thus, We describe the vehicle flow on a multilane highway in
what is the difference between them as well as why the sepaerms of its characteristics averaged over the road cross sec-

free-flow synchronized mode, oY

transition
region, u

vehicle density, p

b4

Vel — PfU
u:Pc| cl ™ Pt f. (10

Il. ORDER PARAMETER AND THE INDIVIDUAL
DRIVER BEHAVIOR
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order parameter A: for(@)and(¢c) A< 1; for(d) h~1 (@) Free flow: vehicle density p ~p,, order parameter ke < hg

(a) low car density, p < p, (o) high car density, p =~ p, @D_’@D _,@D _,-»@D—»
- — T < N\ 5<" Ky//j .
" (o [O— O @ K> @ G-

- - -

(b) Synchronized mode: vehicle density p ~ p,, order parameter ;> h .

(b) car density near the transition “free flow <= synchronized mode”, p ~ p
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FIG. 2. Schematic illustration of the car arrangement in the vari- g & % g
ous phases of traffic flow and the multilane vehicle interaction g @ E
caused by car overtaking. = g
] ]
. . o o
tion, namely, by the car densip, the mean velocity, and hesdway; Ax hieatiwny; Az

the order parametdr. The latter is the measure of the cor-

relations in the car motion or, what is equivalent, of the car FIG. 3. Schematic illustration of the alteration in the vehicle
arrangement regularity forming due to the lane change by tharrangement near the free flow synchronized mode phase tran-
“fast” drivers. Let us discuss the physical meaning of the Sition.

order parameteh in detail considering individually the free . .
flow, synchronized mode, and jammed traffiGg. 2. vehlcle arrangement more regular because of platoon.dlss,l—
' ' pation. So as the order parametegrows the free traffic

becomes more regular. Nevertheless, in this case the density
of the car mulitlane triplets remains relatively lolw=<1,
and the vehicle ensembles should exhibit weak correlations.
When vehicles move on a multilane highway without Whence it follows also that the mean car velocilyis an
changing the lanes they interact practically with the nearesihcreasing function of the order paramelein the free flow.
neighbors ahead only and, so, there should be no intern&h the jammed motior{Fig. 2(c)] leaving current lanes is
correlations in the vehicle flow at different lanes. Therefore hampered because of lack of room for the maneuvers. So the
although under this condition the traffic flow can exhibit car ensembles at different lanes can be mutually independent
complex behavior, for example, the “stop-and-go” wavesin spite of individual complex behavior. In the given case the
can develop, it is actually of a one-dimensional nature. Irorder parameter must be small, tdo<1, but, in contrast,
particular, the drivers that would prefer to move faster tharthe car mean velocity should be a decreasing functioh. of
the statistically mean driver will bunch up forming the pla- In fact, for highly dense traffic any lane change of a car
toons headed by a relatively slower vehicle. When the cargequires practically that the neighbor drivers decelerate giv-
begin to change lanes for overtaking slow vehicles the caing a place for this maneuver.
ensembles at different lanes will affect one another. The case Figure 3 illustrates the free flows synchronized mode
of this interaction is due to that a car during a lane changeransition. As the car density grows in free flow, the fast
maneuver occupies, in a certain sense, two lanes simultairivers that at first overtake slow vehicles individually begin
neously, affecting the cars moving behind it in both theto gather into platoons headed by more slow cars among
lanes. Figure @) illustrates this interaction for cars 1 and 2 them but, nevertheless, moving faster than the statistically
through car 4 changing the lanes. The drivers of both cars inean vehicldFig. 3@)]. The platoons are formed by drivers
and 2 have to regard car 4 as the nearest neighbor and, sweferring to move as fast as possible keeping short head-
their motion will be correlated during the given maneuverways without lane changing. Such a state of the traffic flow
and after it during the relaxation time. In the same way should be sufficiently inhomogeneous and the vehicle head-
car 1 is affected by car 3 because the motion of car 4 directlyvay distribution has to contain a short headway spike as
depends on the behavior of car 3. The more frequently lanebserved experimentally if83]. Therefore, even at a suffi-
changing is performed, the more correlated traffic flow thereciently high car density the free flow should be characterized
is on a multilane highway. Therefore, it is reasonable to inby weak multilane correlations and not too great values of
troduce the order parametebeing the mean density of such the order parameten;. The structure of these platoons is
car triplets normalized to its maximum possible for the givenalso inhomogeneous; they comprise cars whose drivers
highway and to regard it as a measure of the multilane corwould prefer to move at different headwaffer a fixed ve-
relations in the vehicle flow. locity) under comfortable conditions, i.e., when the cars
On the other hand, the order parameteintroduced in  moving behind a given car do not jam it or none of the
this way can be regarded as a measure of the vehicle arrangéehicles moving on the neighboring lanes hinders its motion
ment regularity. Let us consider this question in detail for theat the given velocity provided it changes the current lane. So,
free flow, synchronized mode, and jammed traffic individu-when the density of vehicles attains sufficiently high values
ally. In the free flow the feasibility of overtaking makes the and their mean velocity decreases remarkably with respect to

A. Physical meaning of the order parameterh
and its governing equation
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the velocity on the empty highway some of the fast drivers h h

can decide that there is no reason to move so slowly at such p is fixed v is fixed

short headways requiring strain. Then they can either over-

take the car heading the current platoon by changing lanes

individually or leave the platoon and take vacant pld¢eg.

3(a)]. The former has to increase the multilane correlations .

and, in part, to decrease the mean vehicle velocity because 0 v 0 p

the _o_ther drivers Shou_ld give place for this Maneuvers i a o, 4. Qualitative sketches of the order paramétes a func-
sufficiently dense trafﬂc_ flow. The latter also will decreasetion of the vehicle mean velocity and the density specified by
the mean vehlcle_ velocity k_)e_cause these_ places were vacafit. pehavior of individual drivers.

from the standpoint of sufficiently fast drivers only but not

from the point of view of the statistically mean ones, prefer-densityp and the mean velocity. Thus for a uniform ve-
ring to keep longer headways in comparison with the platoomicle flow we write

headways. Therefore, the statistically mean drivers have to

decelerate, decreasing the mean vehicle velocity. The two dh

maneuver types make the traffic flow more homogeneous o Phe), (1)
dissipating the platoons and smoothing the headway distri-

bution[Fig. 3(b) and the low fragmeijt Besides, the single- wherer is t_he time required _of drivers coming to the dec_i-
vehicle experimental date83] show that the synchronized Sion to begin or stop ovgrtaklng maneuvers and the function
mode is singled out by long-distant correlations in the ve-_cD(h’PW) possesses a single stationary pdirth(p,v) be-
hicle velocities, whereas the headway fluctuations are corrd9 Stable and, thus,

lated only on small scales, which justifies the assumptions of oD

the synchronized mode being a more homogeneous state —>0. (12
than the free flow. We think that the given scenario describes dh

the synchronized mode formation which must be characterre |atter inequality is assumed to hold for all the values of
ized by a great value of the order parametgr-hy, and a  the order parameter for simplicity. We note that Etf) also
lower velocity in comparison with the free flow at the sameg|jows for the delay in the driver response to changes on the
vehicle density. road. However, in contrast with models similar to E¢s.

In addition, whence it follows that first the left boundary and (2), here this effect is not the origin of the traffic flow
of the headway distribution should be approximately theinstability and, thus, its particular description is not so cru-
same for both the free flow and the synchronized mode neatial. Moreover, as discussed in the Introduction, the time
the phase transition, which corresponds to the experimentgharacterizes the delay in the driver decision concerning the
data[33]. Second, since in this case the transition from thelane changing but not the control over the headway, enabling
free flow to the synchronized mode leads to the decrease ims to assume>7’.
the mean velocity, the fast driver will see no reason to alter The particular valué(v,p) of the order parameter results
their behavior and to move forming platoons again until thefrom the compromise between the danger of the accident
vehicle density decreases and the mean velocity growduring changing lanes and the will to move as fast as pos-
enough. It is reasonable to relate this characteristics to thsible. Obviously, the lower the mean vehicle velocitis for
experimentally observed hysteresis in the free flowsyn-  a fixed value ofp, the weaker is the lane changing danger
chronized mode transitionl2—14. Third, for a car to be and the stronger is the will to move faster. Besides, the
able to leave a given platoon the local vehicle arrangement afigher the vehicle density is for a fixed value ofy, the
the neighboring lane should be of special form and when agtronger is this dangethere the will has no effect at all
event of the vehicle rearrangement occurs its following evoThese statements enable us to regard the depenténge)
lution depends also on the particular details of the neighboras a decreasing function of both the variahles (Fig. 4)
ing car configuration exhibiting substantial fluctuations.and we take into account the inequal{ty2) to write
Therefore, the synchronized mode can comprise a great
amount of local metastable states and corresponds to a cer- Py od
tain two-dimensional region on the flow-density plarje ( 3_>0’ 3_>0’ (13

v p
plane rather than a ling = 9(p)p, which matches the ex-
perimental datg11] and the modern notion of the synchro- with the latter inequality stemming from the danger effect
nized mode naturg/—9]. This feature seems to be similar to only.
that met in physical media with local order, for example, in  Equation(11) describes actually the behavior of the driv-
glasses where phase transitions are characterized by a wides who prefer to move faster than the statistically mean
range of controling parametefemperature, pressure, gtc. vehicle and whose readiness for risk is greatest. Exactly this
rather than their fixed valugsee, e.g.[41]). group of drivers governs the value bf There is, however,

This uncertainty of the synchronized mode, at least qualianother characteristic of the driver behavior; it is the mean
tatively, may be regarded as an effect of the internal fluctuavelocity v =9(h,p) chosen by thestatistically averaged
tions of the order parametér and at the first step we will driver also taking into account the danger resulting from the
ignore them assuming the order paraméieio be deter- frequent lane changing by the fast drivers. This characteristic
mined in a unique fashion for fixed values of the vehicleis actually the same as the one discussed in the Introduction
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B¢:,p) ; . metastability
_p P<Pc: 1
B(0,p) |
D ' -
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) ; 5
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g i &
g : g
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t
0 order parameter, h 1 0 0. P, P o
FIG. 5. A qualitative sketch of the mean vehicle velocity vs the vehicle density, p

order parameteh for several fixed values of the vehicle density FIG. 6. The region of the traffic flow instability in tHep plane

and the form of the curvé(p) displaying the dependence of the
order parameter on the vehicle density. The plot is a qualitative
sketch.

but also depends on the order paraméteBo, as a function
of p it meets conditiong4). Concerning the dependence of
J(h,p) on h we can state that generally this function should

be Increasing for ;mall values of the car de_nsytygpo,_ As mentioned above, the value &/dp is solely due to the
because in the given case the lane changing practicallyjanger during changing lanes, so this term can be ignored
makes no danger to traffic and all the drivers can overtakg | the vehicle density becomes sufficiently high. In other
vehicles moving at lower speed without risk. By contrast,words’ in a certain regiop< p,<py the derivativede/dp
when the vehicle density is sufficiently highss pg, only the ~ (8D /dv)(919p)<0 by virtue of Egs.(4) and (13). So,

most “impatient’l' drivers pt_ar_manently change the lanes for he local behavior of the functiom(p) [meeting the equality
overtaking, making an additional danger to the most part o $=0 and, thus,dh/dp=—(3¢/dp)(dblah) 1] depends

the other drivers. Therefore, in this case the veloditi.p)  gjrectly on the sign of the derivatived/dh; it is increasing
has to decrease as the order paramietieicreases. For cer- or decreasing fo#¢/dh>0 or d¢/Ih<0, respectively.

tain intermediate values of the vehicle densjys p., this For long-wave perturbations proportional to @kg} of

dependence is to be weak. Figure 5 shows the V?|0Cit¥he car distribution on a highway, the densjtycan be
3(h,p) as a function of for different values op, where, in treated as a constant at the lower ordek.imherefore, ac-

addition, we assume the effgct .Of the order parambter cording to Eq.(15) the steady-state traffic flow is unstable if
€ (0,1) near the boundary points is weak and we set

d¢plah<0.
99 Due to Eqgs(12) and(14) the first term on the right-hand
—=0 at h=0 and h=1. (14 side of EQ.(16) is dominant in the vicinity of the line&

dh =0 andh=1, thus in this region the curvg(p) is increas-

We will ignore the delay in the relaxation of the mean ing and the stationary state qf the traffic flow is stable. For
velocity to the equilibrium valuey =9(h,p) because the P<Pc the valuedd/sh>0 (Fig. 9); therefore, the whole
corresponding delay time characterizes the driver controf€9i0n {0<h<1,0<p<p} corresponds to the stable car
over the headway and should be short, as already discussBtption. However, forp>p. there can be a region of the
above. Then the governing equatiéhi) for the order pa- o_rder parameteh _vvhere the derivative)¢p/ oh changes the
rameterh can be rewritten in the form sign and the vehicle motion becomes unstable. Indeed, the

solution v = n(h,p) of the equation®(h,p,v)=0 can be
dh def regarded as the mean vehicle velocity controlled by the fast
i —¢(h,p);  @(h,p)=P[h,p,3(h,p)]. (15 drivers and is a decreasing function lobecause of7/dh
=—(9®/oh)/(o®P/dv) 1. So, once such “active” drivers

For the steady-state uniform vehicle flow the solution of theStart to change lanes to move faster, they will do this as
equationé(h,p)=0 specifies the dependenbép) of the frequently as possible especially if thg mean yelocny dg—
order parameter on the car density. Let us now study it$"€@Ses, which corresponds to a considerable increake in
properties and stability. for a small decrease in. So, it is quite natural to assume
that the value of 5/ oh for p>p. is sufficiently small and

B. Nonmonotony of theh(p) dependence
) . - ap oD [dY In
and the traffic flow instability - | ——-_1|<0.
. _ _ dh v ( dh ah) 0 (18
To study the local characteristics of the right-hand side of
Eg. (15 we analyze its partial derivatives Under these conditions the instability region does exist, the
curveh(p) can look like S(Fig. 6), and its decreasing branch
ap 9D 9D 9O : .
= (16) corresponds to the unstable vehicle flow. The lower increas-
ing branch matches the free flow state of the car motion,
whereas the upper one should be related to the synchronized
(17) mode because it is characterized by the order parameter com-
ing to unity.

ohoh T u o’

dp b 9P 99
—=—t—
dp dp Jduv dp
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S4t@ r=1 2 Concluding the present section we note that in the given
gj o § description of the driver behavior governing the order pa-
X a rameterh the vehicle fluxj(h,p)=pd(h,p) is an external

r=0 ! characteristic of traffic flow. So, the obtained form of the
; > fundamental diagram does not follow directly from the de-
0 P, p veloped model, but can be interpreted sufficiently reason-
able. It can be rigorously justified if the critical poimpt
— © corresponds to the maximum of the fljgh*,p) for a cer-
& ; tain fixed valueh* of the order parameter. In other words,
% : L S
a ; when the road capacity is exhausted and the following in-
) i . crease in the vehicle density leads to a decrease in the ve-
‘f‘, | y hicle flux the drivers divide into two groups; the majority
;E’ prefer to move at their own lanes whereas the most “impa-
o free-flow ! region of : synchronized tient” drivers change the lanes as frequently as possible,
motion | hysteresis | mode giving rise to the traffic instability. This problem, however,
: : deserves an individual investigation.
0 P, Py Py

vehicle density, p Ill. PHASE COEXISTENCE.
DIFFUSION-LIMITED CLUSTER MOTION
FIG. 7. The mean vehicle velocitg) and the vehicle fluxb) vs
the vehicle density for the limit values of the order paraméter
=0 andh=1 as well as the resulting fundamental diagr@m The

plot is a qualitative sketch.

The preceding section has considered uniform traffic flow,
so we analyzed actually the individual characteristics of the
free flow and the synchronized mode. In the present section
we study their coexistence, i.e., the conditions under which a
C. Hysteresis and the fundamental diagram car cluster of finite size forms. This problem, however, re-

The obtained dependende(p) actually describes the quires that. the traffic flow mo.del be' defined cqncretely.
first-order phase transition in the vehicle motion. Indeed, Nerefore, in what follows we will consider a certain simple
when increasing the car density exceeds the vajtthe free model which |Ilus'_[rat§s the_ characteristic features of the car
flow becomes absolutely unstable and the Synchromzeal_uster.self—orgamzatmn without complex mathematical ma-
mode forms through a sharp jump of the order parameter. IffiPulations. , ,
however, after that the car density decreases the synchro- AS Pefore, the model under consideration assumes the

nized mode will persist until the car density attains the valudnéan yelocity rglaxatign to be immediate anq modifies the
p,<py. Itis a typical hysteresis and the regign,(p,) Cor- governing equatiofl5) in such a way as to ascribe the order

responds to the metastable phases of traffic flow. parameteh to a local car group. In other words, we describe
Let us now discuss a possible form of the fundamentawe v_ehicle flow by the Lighthill-Whitham eq_uation kbl
diagramj = (p) showing the vehicle flu=pd[p] as a sipation(see, e.g.[42] and also the Introductionwe replace

function of the car density,, where, by definition,9{ p] the time derivative in Eq(15) by the particle derivative, and
= 9[h(p).p]. It should be p(;inted out that here we confine W€ take into account that the order parameter cannot exhibit

our consideration to the region of not too large values of the?UPstantial variations over scales 6" r<vor (0 is the ve-
car density,p<p,, where the free flow— synchronized ocity variance,vg |s_the typical car velocity in the free
mode transition takes place. The synchronized modé\low)' Namely, we write

—jammed traffic transition will be discussed below. Figure 5

7(a) displays the dependenag(h,p) of the mean vehicle ‘7_p+ dpd(h,p)] :Da_P (19
velocity on the densityp for the fixed limit values of the dt 28 ax?’

order parameteh=0 and 1. For small values g these

curves practically coincide with each other. As the vehicle
densityp grows and until it comes close to the critical value T
pc when the lane change danger becomes substantial, the

velocity 9(1,p) practically does not depend gn So atthe | et ys discuss the meaning of the particular terms of the
point p¢ at which the curves)(1,0) and 9(0,0) meet each given model. The Burgers equaticl9), as already dis-
other, 9(1,p) is to exhibit a sufficiently sharp decrease in cyssed in Introduction, allows for the fact that drivers govern
comparison with the latter one. Therefore, on one hand, theheir motion taking into account not only the behavior of the
function j;(p)=pd(1,p) has to be decreasing for>p..  nearest cars, but the state of traffic flow inside the whole field
On the other hand, at the poipt for h<1 the effect of the  of their front view of length. The effective diffusivit{) can
lane change danger is not extremely strong; it only makes thge estimated ab~L*v,, whereL*>1 is a front distance
lane change ineffective)#/dh~0 (Fig. 5. So, it is reason-  |ooked through by drivers assumed to be much greater than
able to assume the functigg(p) =p9(0,p) increases near the scald, so

the pointp.. Under the adopted assumptions the relative

arrangement of the curvgg(p), j1(p) is demonstrated in Dr~IL*>12 (22

Fig. 7(b), and Fig. Tc) shows the fundamental diagram of

traffic flow resulting from Figs. 6 and(f3). The function¢(h,p) is of the form

dh dh
Zpohe) o

u o | =Lt = d(hp) +E0x,D. (20
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= (a) '~ | 5/4

1] P

% 1 é ( L_*) =o<l1 (27)

g 2

d 2

B 2 ; (o<1, because, otherwise, the traffic flow dynamics would

80 . : : be totally random It should be noted that small random
0 P, p+A 0 P, pHA variations of the order parametkrnear the point$=0, h

vehicle density, p vehicle density, p =1 going into the regions<0 andh>1, respectively, do

_ not come into conflict with its physical meaning as the mea-
FIG. 8. The dependendgp) and the fundamental diagram of syre of the car motion correlations. Indeed, the chosen values

traffic flow described by the modé19),(20). h=0 andh=1 can describe a renormalization of real corre-
lation coefficientsh="h,;>0, h,<1.
def According to Eq.(20), for the order parametérthe char-
¢(h,p)=h(1-h)[a(p)—h], (22)  acteristic scale of its spatial variationslisso, the layerJ,
separates the regions whére-0 and 1 is of thickness about
where I. Due to inequality21) the car density on such scales can be
treated as constant. Therefore, the transition rediprbe-
1 for p<p. tween practically the uniform free flow and the congested
a(p)=1{ (pe+A—p)IA for p.<p<pct+A phase is of thickness determined mainly by spatial variations
of the vehicle density and on such scales the layeran be
0 for p>pc+A. treated as an infinitely thin interface. In addition, the charac-

teristic time scale of the layed, formation is aboutr,
It describes such a driver behavior ttiet 0 andh=1 are  \yhereas it takes about the timg~D/v2~7(L*/1)>r for
the unique stable values of the order parametepfop. and e jayer,, to form. Thereby, when analyzing the motion of
p>_pC+A, respectively, whereas fop.<p<p.t+A the wide car clusters we may regard the order parameter distri-
points h=0, h=1 are both locally stable and there is an o h(x,t) as quasistationary for a fixed value of the car
additional unstable stationary point, namel=a(p). The  gensity p. Let us now consider two possible limits of the

term layer J;,, motion under such conditions.
2
Zj{h}d:ef| 2@ + I_ @ (23) A. Regular dynamics
ox? ‘/E X In the region p,<p<p.+A until the value ofa(p)

comes close to the boundariess0 andh=1 the effect of
governs spatial variations in the fielt{x,t) and takes into  the random fluctuations is ignorable. In this case by virtue of
account that drivers mainly follow the behavior of cars inthe adopted assumptions the solution of E2D) that de-
front of them and cars moving at the rear cannot essentiallgcribes the layeB, moving at the speed is of the form
affect them. The mean car velocity dependshaandp as
1 X—ut
def h_E 1+tan)—( N ) .
pd(h,p)=pdo(1—h)+[pcdo—v(p—pc)lh. (24

(28)

Here for the layef(, of the free-flow— synchronized mode
The last term on the right-hand side of E0) characterizes transition and for the lay€¥,, of the opposite transitiotFig.
the random fluctuations in the order parameter dynamics, 9)

(£(x,1)=0, (25) 2\2,

No1= . Nig=—2427,1, (29)

(EXDEX )y =021 T8(x—x")8(t—t"),  (26)
A,

where o is their dimensionless amplitude. Expressi¢pg) Uo1=%o— 5 — \/——[1+ n,—2a(p)],  (30)
and(24) give theh(p) dependence and the fundamental dia- 27,7
gram shown in Fig. 8 simplifies the one presented in Fig 7. A |

If we ignore the random fluctuations of the order param- _ v
eterh, i.e., setr=0, then the mode([19),(20) will give us an U= o= 5~ E[vaa(p‘)_(%_ Dl @Y
artificially long delay (much greater thamr) in the order
parameter variations from, for example, the unstable poinfyhere we introduced the quantities
h=0 to the stable poinh=1. Such a delay can lead to a
meaningless great increase of the vehicle density in the free A,=9(0,0)—9(1p),
flow without phase transition to congestion. In order to avoid

this artifact and to allow for the effect of real fluctuations in A |2 12 A
the driver behavior we also will assume the amplitudéo o= 1+< ot ) + v
obey the conditiorf43]: 22 242!
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layer 3, (b)

wide cluster

T e e e P, P, /| wide cluster P,

. mesocluster
congestion . -

T

cluster dimension, L

0 \_/ ~p*
highwa X d
gy 0 . 1 P, - pC+A
" ' } highway, x/L mean density, p
g |n i z | ; . -
2 P ! p, g ! h P, FIG. 10. The possible forms of the car clusters and their dimen-
T Y ":, N b +A 2 % 'p o +A sion vs the mean car density.
s .C C' = 'C ,
o | \: A | : - e
! ' 5] ' : c1Pc .
8 ‘ y 5 : : metastable regiong e (p.,p.+A). The term “sufficiently
z ! ! E L :

N ;, ; large” means that the cluster dimensibris assumed to be
' ' ' much greater than the front distancé& looked through by
drivers so they cannot look round the congestion as a whole.

FIG. 9. The distribution of the order parameter and the car den!n this case a quasilocal description of traffic flow similar to

sity in the vicinity of the layergy, of the transition between the free the differer]tial equati0n$19)_and(20) is jgstified.
flow and the synchronized phase as well as the velocity of their CONVerting to the framg=x—ut moving at the cluster
motion vs the local values; of the car density. velocity u, solving Eq.(19) individually for the free flow and
the synchronized phase, and treating the laygras infi-
andp; is the corresponding value of the car density inside theitely thin interfaces we get the following conclusion. Within
layersJg; and Jgo. the framework of the given model the car cluster moves up-
Expressiong30) and (31) describe the regular dynamics Stream sufficiently fast, so the motion of the lay6gs and
of the car cluster formation because the transition, for ex-/10iS governed by the noisg(x,t). In this case the values of
ample, from the free flow to the synchronized phase at 4he car density at the layefs, andJ;o have to bep;~p.
certain pointx is induced by this transition at the nearest A andp¢=~p., respectively. Thereby, the cluster velocity
points. The dependence of the velocitigg anduy, on the U is mainly determined by the car redistribution governed by
local car density, is illustrated in Fig. 9. The characteristic the diffusion-type processes. The latter feature is the reason
velocities attained in this type of motion can be estimated a¥/Ny we refer to the cluster dynamics under such conditions
as to the diffusion-limited motion. The transition regigp,
Yo—u~max doAlpe, I/7}, between practically the uniform free-flow state and the clus-
ter contains the exponential increase of the vehicle density
so, under the adopted assumptions the regular dynamics doeside the free-flow phase from the valpe far from the
not allow for the sufficiently fast motion of the layefs, “interface” Jo; Up topj~pc+A atJp,,
upstream.

regular dynamics - - - - noise-induced motion

p=pi+(p;—pr)expldsy},

B. Noise-induced dynamics whereq;=(9,+|u|)/D~1/L* and the framdy} is attached

As the car density tends to the critical valueg, or p,  to the interfacej,,. The transition regionC,, from the syn-
+ A the value ofa(p) comes close to the boundariaép,)  chronized phase to the uniform free flow is to be localized
=1 anda(p.+A)=0, and the poinh=1 orh=0 becomes inside the car cluster. So, it is characterized by the decrease
unstable, respectively. In this case the effect of the randorin the vehicle densityspcexp{q;y}, whereq;=(|u|—v)/D,
fluctuations £(x,t) plays a substantial role. Namely, the and the vehicle free flow leaving the cluster is uniform at all
phase transition, for example, from the free flow to the syndts points[Fig. 10@)].
chronized motion(for p~p.+A) is caused by the noise The cluster velocity is directly determined by the motion
£(x,t) and equiprobably takes place at every point of theof the interfaceJdy,. Therefore, assuming also the cluster
region whereinp~p.+A rather than is localized near the dimensionL large in comparison with*, from Eq.(19) we
current position of the layely,. Under these conditions the get the expression of the same form as the Lighthill-
motion of the layerg);, can be qualitatively characterized by Whitham formula(10) relating the cluster velocity and the
an extremely high velocity in both the directions, which is vehicle flux characteristics on both sides of the laygs .

illustrated in Fig. 9 by dashed lines. Whence it follows that at the first approximation
We note that the noise-induced motion, in contrast to the
regular dynamics, is to exhibit significant fluctuations in the u=-—v, (32

displacement of the laye¥,, as well as in its forms. This

question is, however, a subject for individual study. the valueq; =0, and the vehicle cluster is of the form shown

in Fig. 10@@ under the name “mesocluster.” Assuming the
o . . total number of cars on the highway of lendth, fixed we

C. Diffusion-limited motion of vehicle clusters get the expression for the mesocluster dimensipn
Let us now analyze the motion of a sufficiently large clus- _

ter that can form on a highway when the initial car density oL P~ Pc
or, what is the same, the average car densitelongs to the ST A

(33
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However, this result is justified only for sufficiently small i 4 ' metastability
values of p—p.)/A<1, when the cluster dimension is not syncl']mnized motion
too large,Lq;<1 (neverthelessL.>L*). Exactly for this = '
reason we refer to such clusters as mesoscopic ones. In order g ; q
to study the opposite Iir_nitl_qj>_1, we have to take into TEJ inétability L
account that the valup; is not rigorously equal te. but g " ol
practically is the rootpf>p. of the equationu,ypf) & .
= —v. In this case the Lighthill-Whitham formuld0) gives -"é ) ?
the expression © Jam
% 0
pi —p
U= —| v+ (dg+v) ———|, P . , P
A vehicle density, p
leading to the following estimates of the thickness; bf the FIG. 11. The instability region and thie(p) dependence de-
transition regionl,y: scribing the transition from the synchronizézbngestepiphase to
the heavy congested phasgejam in the region of high car density.
DA A
1/q;~ ) " ~L*— : In Sec. Il we have studied the dependence of the order
(Fo+v)(pF —pc) (pf = pe) parameteh on the car density ignoring the first term on the

right-hand side of Eq(17) caused by the danger of lane
changing. This assumption is justified when the car density is
not too high. In extremely dense traffic flow, when the car
— density exceeds a certain valyes pp,=<p,, changing lanes
L:erﬂ (34) become_s sufficie_ntly dange_rou_s and the functieth,v,p)
A describing the driver behavior is to depend strongly on the
_ . _ vehicle density in this region. In addition, the vehicle motion
and the region of the mean car density corresponding to thi§gcomes sufficiently slow. Under such conditions the former
limit is specified by the inequality term on the right-hand side of expressitti7) should be
. . dominant and, thusj¢/dp>0. Therefore, the stable vehicle
pP_—Pecg L A (35) motion corresponding té¢/dh>0 matches the decreasing
A Lra (pF —pe) ' dependence of the order paramdiép) on the vehicle den-
sity p for p>py,. So, as the vehicle densigyincreases the
The resulting dependence of the cluster dimension on theurveh(p) can again go into the instability regidim the hp

The form of such a wide cluster is shown in Fig.(4Q its
dimension is

mean car density is illustrated in Fig. 1(b). plang, which has to give rise to a jump from the synchro-
nized mode with greater values of the order parameter to a
IV. SYNCHRONIZED MODE < JAM PHASE new traffic state with its less valuéBig. 11). Obviously, this

transition between the two congested phases also exhibits the
same hysteresis as the one described in Sec. Il

In Sec. Il we have considered the phase transition be- We identify the latter traffic state with the jammed vehicle
tween the free flow and the synchronized mode. Howevennotion. Indeed, in extremely dense traffic lane changing is
according to the experimental ddte?] there is an additional practically depressed, making the car ensembles at different
phase transition in traffic flow regarded as the transition belanes independent of one another. So, in this case vehicle
tween the synchronized motion and the jammed “stop-andflow has to exhibit weak multilane correlations and we
go” traffic. This transition occurs at extremely high vehicle should ascribe to it small values of the order paramietér
densitiesp coming close to the limit valug,. should be noted that the experimental single-vehicle data

The present section briefly demonstrates that the deve[33] demonstrates strong correlations of variations in the
oped model for the driver behavior also predicts a similartraffic flux and the car density for both the free flow and the
phase transition at high car densities. To avoid possible misstop-and-go motion. By contrast, the synchronized mode is
understandings we, beforehand, point out that the model inharacterized by small values of the cross-covariance be-
its present form cannot describe details of the synchronizetiveen flow, speed, and density. In other words, for the free
mode« jam transition because we have not taken into acflow and the stop-and-go motion the traffic fluyx=J9p
count the delay in the driver response to variations in headshould depend directly on the car dengityas it must in the
way. The latter is responsible for the formation of the stop-present model if we sdi=0.
and-go pattern, so to describe the jammed traffic on Finalizing the present section we point out that the given
multilane highways we at least should combine a governingnodel treats the jammed phase as a “faster” vehicle motion
equation for the order parameterand a continuity equation than the synchronized mode at te@mevalues of the order
similar to Egs.(20) and (19) with an equation for the car parameter. There is no contradiction with the usual view on
velocity relaxation similar to Eq(2). This question, how- the synchronized mode as a high flux traffic state. The latter
ever, is worthy of individual study. Besides, the approxima-corresponds to the traffic flow at the vehicle densities near
tions used in Sec. Ill to characterize the synchronized modehe free flow« synchronized mode phase transition rather
at the car densities neat. do not hold here. than close to the limit valup,. Besides, an ordinary driver’s

TRANSITION: BRIEF DISCUSSION
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experience prompts that a highly dense traffic flow can b¢12]. Besides, we have shown that both these transitions
blocked at all if one of the cars begin to change lanes. Nevshould be of the first-order type and exhibit hysteresis,
ertheless, in order to describe, at least qualitatively, the reahatching the experimental dafa2—14. The synchronized
features of the synchronized mode stop-and-go waves mode is characterized by a large value of the order param-
phase transition a more sophisticated model is required. Theter, whereas the free flow and the jam match its small val-
present description only relates it to the instability of theues. The latter feature enables us to treat the jam as a phase
order parameter at high values of the vehicle density. comprising the vehicle flows at different lanes with weak
Besides, the present analysis demonstrates also the nomutual interaction because of the lane changing being de-
monotonic behavior of the order parameter as the car densifyressed.
increases even if we ignore the hysteresis regions and focus In order to illustrate the characteristic features of the car
our attention on the stable vehicle flow regions only. ltclusters that self-organize under these conditions we have
should be noted that a similar nonmonotonic dependence afonsidered a simple model that deals only with the evolution
the lane change frequency on the car density as well as thef the car density and the order parameter. In particular, it is
platoon formation has been found in the cellular automatorshown that in the steady state the car density inside the clus-

model for two-lane traffi¢44]. ter and the free flow being in equilibrium with the cluster, as
well as the velocity at which the cluster moves upstream, are
V. CLOSING REMARKS fixed and determined by the basic properties of the traffic

flow. On the contrary, the size of the car cluster depends on

To conclude this paper we recall the key points of thehe initial conditions.
developed model. We have proposed an original macro- Finally, we would like to underline that the developed
scopic approach to the description of multilane traffic flow model takes into account only one effect that causes the traf-
based on an extended collection of the traffic flow state varific fiow instability. The other, the delay in the driver control
ables. Namely, in addition to such characteristics as the cgyer the headway, seems to be responsible for the stop-
densityp and mean velocity being actually the zeroth and and-go waves in the jammed phaser a review of the con-
first moments of the “one-particle” distribution function, we tinuum description of this phenomena see, d21,25). So,
introduce a new variable called the “order parameter.” It combining the two approaches into one model it enables a
stands for thdanternal correlations in the car motion along detailed description of a wide class of phenomena occurring
different lanes that are due to lane-changing maneuvers. Thg the transitions from free flow to the heavy congested
order parameter, in fact, allows for the essentially “many-phase on highways. In this way the order parameter model
body” effects in the car interaction so it is treated as ancould also describe the formation of a local jam on a high-
independent-state variable. _ ~ way whose boundaries comprise both of the phase transi-

Taking into account the general properties of the driverjons. In the present form it fails to do this because the free
behavior we have stated a governing equation for the ordefow and the jammed traffic are characterized by small values
parameter. Based on current experimental daia-14,33  of the order parameter.
we have assumed the correlations in the car motion on mul- Concerning a possible derivation of the order-parameter
tilane highways to be due to a small group of “fast” drivers, model from the gas-kinetic theory we note that the appear-
i.e. the drivers who move substantially faster than the statisance of the fast driver platoons demonstrates a substantial
tically mean vehicle continuously overtaking other cars.deviation of the car distribution function from the monotonic
These “fast” cars, on one hand, increase individually theqyasiequilibrium form. So, to construct an adequate system
total rate of vehicle flow but, on the other hand, make theyf equations dealing with the moments of the distribution

accident danger greater and, thus, cause the statistically mefifhction a more sophisticated approximation is required.
driver to decrease the velocity. The competition of the two

effects depends on the car density and the mean velocity and,
as shown, can give rise to the traffic flow instability. It turns
out that the resulting dependence of the order parameter on
the car density describes in the same way the experimentally One of us(l.A.L.) would like to acknowledge the hospi-
observed sequence of free flows synchronized motion tality of the Physics Department of Rostock University dur-
—jam phase transitions typical for traffic flow on highways ing the stay at which this work was carried out.
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