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Order-parameter model for unstable multilane traffic flow
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We discuss a phenomenological approach to the description of unstable vehicle motion on multilane high-
ways that explains in a simple way the observed sequence of the ‘‘free flow↔ synchronized mode↔ jam’’
phase transitions as well as the hysteresis in these transitions. We introduce a variable called an order para-
meter that accounts for possible correlations in the vehicle motion at different lanes. So, it is principally due to
the ‘‘many-body’’ effects in the car interaction in contrast to such variables as the mean car density and
velocity being actually the zeroth and first moments of the ‘‘one-particle’’ distribution function. Therefore, we
regard the order parameter as an additional independent state variable of traffic flow. We assume that these
correlations are due to a small group of ‘‘fast’’ drivers and by taking into account the general properties of the
driver behavior we formulate a governing equation for the order parameter. In this context we analyze the
instability of homogeneous traffic flow that manifested itself in the above-mentioned phase transitions and gave
rise to the hysteresis in both of them. Besides, the jam is characterized by the vehicle flows at different lanes
which are independent of one another. We specify a certain simplified model in order to study the general
features of the car cluster self-formation under the ‘‘free flow↔ synchronized motion’’ phase transition. In
particular, we show that the main local parameters of the developed cluster are determined by the state
characteristics of vehicle motion only.

PACS number~s!: 45.70.Vn, 05.65.1b, 89.40.1k
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I. INTRODUCTION. MACROSCOPIC MODELS FOR
MULTILANE TRAFFIC DYNAMICS

The study of traffic flow actually formed a novel branc
of physics since the pioneering works by Lighthill an
Whitham@1#, Richards@2#, and, then, by Prigogine and He
man @3#. It is singled out by the fact that in spite ofmoti-
vated, i.e., a nonphysical individual behavior of moving v
hicles ~they make up a so-called ensemble of ‘‘self-driv
particles,’’ see, e.g.,@4–6#!, traffic flow exhibits a wide class
of critical and self-organization phenomena met in physi
systems~for a review see@7–9#!. Besides, the methods o
statistical physics turn out to be a useful basis for the th
retical description of traffic dynamics@10#.

The existence of a basic phase in vehicle flow on mu
lane highways called synchronized motion was recently
covered by Kerner and Rehborn@11#, impacting significantly
the physics of traffic as a whole. In particular, it turns o
that the spontaneous formation of moving jams on highw
proceeds mainly through a sequence of two transitions: ‘‘f
flow → synchronized motion→ stop-and-go pattern’’@12#.
All the three traffic modes are phase states, meaning
have the ability to persist individually for a long time. Be
sides, the two transitions exhibit hysteresis@12–14#, i.e., for
example, the transition from the free flow to the synch
nized mode occurs at a higher density and lower velo
than the inverse one. As follows from the experimental d
@11,13,14# the ‘‘free flow ↔ synchronized mode’’ phas
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transition is essentially a multilane effect. Recently Kern
@7–9# assumed it to be caused by a ‘‘Z’’-like form of th
overtaking probability depending on the car density.

The synchronized mode is characterized by substan
correlations in the car motion along different lanes beca
of the lane changing maneuvers. So, to describe such
nomena a multilane traffic theory is required. There ha
been proposed several macroscopic models dealing
multilane traffic flow and based on the gas-kinetic theo
@15–20#, a compressible fluid model@21# generalizing the
approach by Kerner and Konha¨user @22,23#, and actually a
model @24,25# dealing with the time-dependent Ginzbur
Landau equation.

All these models describe traffic flow in terms of the c
densityr, mean velocityv, and, maybe, the velocity vari
anceu or we ascribe these quantities to vehicle flow at ea
lanea individually. In other words, the quantities$r,v,u%a
are regarded as a complete set of the traffic flow state v
ables and if they are fixed then all the vehicle flow char
teristics should be determined. The given models relate
self-organization phenomena actually to the vehicle flow
stability caused by the delay in the driver response
changes in the motion of the nearest cars ahead. In fact, le
briefly consider their simplified version~cf. @26,27#! which,
nevertheless, catches the basic features taken into acco
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PRE 62 6083ORDER-PARAMETER MODEL FOR UNSTABLE . . .
Here the former term on the right-hand side of Eq.~2!, a
so-called pressure term, reflects dispersion effects due to
finite velocity varianceu of the vehicles and the latter on
describes the relaxation of the current velocity within t
time t8 to a certain equilibrium valueU$r,u%. In particular,
for

P$r,v,u%5ru2h
]v
]x

, ~3!

whereh is a ‘‘viscosity’’ coefficient and the velocity vari-
anceu is treated as a constant, we are confronted with
Kerner-Konha¨user model@22,23#. In the present form the
relaxation timet8 characterizes the acceleration capability
the mean vehicle as well as the delay in the driver con
over the headway~see, e.g.,@28–30#!. The value of the re-
laxation time is typically estimated ast8;30 s because it is
mainly determined by the mean time of vehicle accelerat
which is a slower process than the vehicle deceleration or
driver reaction to changes in the headway. The equilibri
velocity U$r% ~here the fixed velocity varianceu is not di-
rectly shown in the argument list! is chosen by drivers keep
ing in mind the safety, the readiness for risk, and the le
traffic regulations. For homogeneous traffic flow the equil
rium velocity U$r%5q(r) is regarded as a certain phenom
enological function meeting the conditions

dq~r!

dr
,0 and rq~r!→0 as r→r0 , ~4!

wherer0 is the upper limit of the vehicle density on the roa
Since the drivers anticipate risky maneuvers of distant c
also, the dependenceU$r% is nonlocal. In particular, it is
reasonable to assume that the driver behavior is mainly g
erned by the car densityr at a certain distant ‘‘interaction
point’’ xa5x1L* rather than at the current onex, which
gives rise to a new term in Eq.~2! based on the gas-kineti
theory @16,17#. Here, for the sake of simplicity following
@26#, we take this effect into account by expandingr(x
1L* ) and thenU$r% into the Taylor series and we write

U$r%5q~r!2v0

L*

r

]r

]x
, ~5!

wherev0 is a certain characteristic velocity of the vehicle
Then linearizing the obtained system of equations with
spect to the small perturbationsdr,dv}exp(gt1ikx) we ob-
tain that the long-wave instability will occur if~cf.
@22,23,26#!

t8~rqr8!2.v0L* 1t8u. ~6!

In the long-wave limit the instability increment Reg depends
on k as

Reg5k2@t8~rqr8!22~v0L* 1t8u!#, ~7!

and the upper boundarykmax of the instability region in thek
space is given by the expression

kmax
2 5

r

th H F t8~rqr8!2

~v0L* 1t8u!
G 1/2
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@hereqr85dq(r)/dr#. As follows from Eq.~6! the instabil-
ity can occur when the delay timet8 exceeds a certain criti
cal valuetc and fort8,tc the homogeneous traffic flow i
stable at least with respect to small perturbations. Moreo
the instability increment attains its maximum atk;kmax, so,
special conditions are required for a wide vehicle cluster
form @22,23,31,32#. In particular, in the formal limitt8→0
from Eq. ~2! we get

v5q~r!2
D

r

]r

]x
, ~8!

whereD5v0L* plays the role of the diffusion coefficient o
vehicle perturbations. The substitution of Eq.~8! into Eq.~1!
yields the Burgers equation

]r

]t
1

]@rq~r!#

]x
5D

]2r

]x2
, ~9!

which describes the vehicle flux stable, at least with resp
to small perturbations in the vehicle densityr.

However, the recent experimental data@11–14,33# about
traffic flow on German highways have demonstrated that
characteristics of the multilane vehicle motion are mo
complex ~for a review see@7–9#!. In particular, there are
actually three types of synchronized modes, the totally
mogeneous state, the homogeneous-in-speed state, an
totally heterogeneous state@11#. The homogeneous-in-spee
state especially demonstrates the fact that, in contrast to
free flow, there is no direct relationship between the den
and flux of vehicles in the synchronized mode because t
variations are totally uncorrelated@11#. For example, an in-
crease in the vehicle density can be accompanied by eithe
increase or decrease in the vehicle flux, with the car velo
being practically constant. As a result, the synchroniz
mode corresponds to a two-dimensional region in the flo
density plane (j r plane! rather than to a certain linej
5q(r)r @11#. Keeping in mind a hypothesis by Kerne
@8,9,34# about the metastability of each particular state in t
synchronized mode region it is natural to assume that th
should be at least one additional state variable affecting
vehicle flux. The other important feature of the synchroniz
mode is the key role of some cars bunched together
traveling much faster than the typical ones, which enables
to regard them as a special car group@11#. Therefore, in the
synchronized mode the function of car distribution in t
velocity space should have two maxima and we will c
such fast car groups platoons in speed.

Anomalous properties of the synchronized mode ha
been substantiated also in@33# using single-car data. In par
ticular, as the car density comes to the critical valuerc of the
free flow↔ synchronized mode transition the time-headw
distribution exhibits a short-time peak~at 0.8 s!. This short-
time headway corresponds to ‘‘ . . . platoons of some ve-
hicles traveling very fast—their drivers are taking the risk
driving ‘‘bumper-to-bumper’’ with a rather high speed
These platoons are the reason for the occurrence of high-
states in free traffic’’@33#. The platoons are metastable an
their destruction gives rise to the congested vehicle mo
@35#. In the synchronized mode the weight of the short-tim
headways is less; however, almost every fourth driver fa
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6084 PRE 62IHOR A. LUBASHEVSKY AND REINHARD MAHNKE
below the 1 s threshold. In the vicinity of the free flo
↔synchronized mode transition the short time-headw
have the greatest weight. In other words, at least near
given phase transition the traffic flow state is to be char
terized by two different driver groups which separate fro
each other in thevelocityspace and, consequently, in mul
lane traffic flow there should be another relaxation proc
distinct from one taken into account by the model~1!,~2!. In
order to move faster than the statistically averaged ca
driver should permanently maneuver pass by the cars m
ing ahead. The meeting of several such ‘‘fast’’ drivers see
to cause the platoon formation. Obviously, to drive in suc
manner requires additional efforts, so, each driver need
certain timet to get the decision whether or not to take p
in these maneuvers. Exactly the timet characterizes the re
laxation processes in the platoon evolution. It should
noted that the overtaking maneuvers are not caused by
control over the headway distance and, thus, the corresp
ing transient processes may be much slower than the d
response to variations in the headway to prevent poss
traffic accidents.

The analysis of the obtained optimal-velocity functio
V(Dx) demonstrates its dependence not only on the head
Dx but also on the local car density. So, in congested fl
the drivers supervise the vehicle arrangement or, at least
to do this in a sufficiently large neighborhood covering se
eral lanes.

Another unexpected fact is that the synchronized mod
mainly distinctive not due to the car velocities at differe
lanes being equal. In the observed traffic flow various la
did not exhibit a substantial difference in the car veloc
even in the free flow. In agreement with the results obtain
by Kerner @11# the synchronized mode is singled out b
small correlations between fluctuations in the car flow,
locity, and density. There is only a strong correlation b
tween the velocities at different lanes taken at the same t
however, it decreases sufficiently fast as the time differe
increases. By contrast, there are strong long-time correlat
between the flow and density for the free flow as well as
stop-and-go mode. In these phases the vehicle flow dire
depends on the density.

Thereby, the free flow, the synchronized mode, and
jammed motion seem to be qualitatively distinct from o
another at the microscopic level. So, it is likely that to d
scribe macroscopically traffic phase transitions the set of
state variables$r,v,u%a should be completed with an add
tional parameter~or parameters! reflecting theinternal cor-
relations in the car dynamics. In other words, this param
has to be due to the ‘‘many-body’’ effects in the car intera
tion in contrast to suchexternalvariables as the mean ca
density and velocity being actually the zeroth and first m
ments of the ‘‘one-particle’’ distribution function. Thus,
can be regarded as an independent state variable of tr
flow. The derivation of macroscopic traffic equations bas
on a Boltzmann-like kinetic approach@36# has also shown
that there is an additional internal degrees of freedom in
vehicle dynamics.

In any case a theory of unstable traffic flow has to answ
in particular, to a question of why its two phases, e.g.,
free flow and the synchronized mode, can coexist and, t
what is the difference between them as well as why the se
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rating transition region~Fig. 1! does not widen but keeps
certain thickness. Besides, it should specify the velocityu of
this region depending on the traffic phase characterist
There is a general expression relating the transition reg
velocity u to the density and mean velocity of cars in the fr
flow and a developed car cluster:r f , v f and rcl , vcl , re-
spectively, that follows from the vehicle conservation@1#,
namely, the Lighthill-Whitham formula

u5
rclvcl2r fv f

rcl2r f
. ~10!

A specific model is to give additional relationships betwe
the quantitiesu, r f , v f andrcl , vcl resulting from particular
details of the car interaction. We note that a description si
lar to Eqs.~1! and ~2! dealing solely with the external pa
rameters$r,v% do not actually make a distinction betwee
the free-flow and congested phases and their coexisten
due to the particular details of the car interaction.

The free flow↔ synchronized motion transition is rathe
similar to aggregation phenomena in physical systems s
as undercooled liquid when in a metastable phase~under-
cooled liquid! the transition to a new ordered~crystalline!
phase goes through the formation of small clusters. Keep
in mind this analogy Mahnke and co-workers@37–39# have
proposed a kinetic approach based on a stochastic m
equation describing the synchronized mode formation t
deals with individual free cars and their clusters. The clus
evolution is governed by the attachment and evaporation
the individual cars and the synchronized mode is regarde
the motion of a large cluster.

To describe such phenomena in physical systems an
fective macroscopic approach was developed, called
Landau phase transition theory@40#, that introduces a certain
order parameterh characterizing the correlations, e.g., in th
atom arrangement. In the present paper following practic
the spirit of the Landau theory we develop a phenomenolo
cal approach to the description of the traffic flow instabil
that ascribes to the vehicle flux an additionalinternal param-
eter which will be also called the order parameterh and
which allows for the effect of lane changing on the vehic
motion. In this way the free flow and the congested pha
become in fact distinctive and solely the conditions of th
coexistence and the dynamics of the transition layer are
subject of specific models.

II. ORDER PARAMETER AND THE INDIVIDUAL
DRIVER BEHAVIOR

We describe the vehicle flow on a multilane highway
terms of its characteristics averaged over the road cross

FIG. 1. Transition region separating, e.g., the free-flow and s
chronized mode.
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PRE 62 6085ORDER-PARAMETER MODEL FOR UNSTABLE . . .
tion, namely, by the car densityr, the mean velocityv, and
the order parameterh. The latter is the measure of the co
relations in the car motion or, what is equivalent, of the
arrangement regularity forming due to the lane change by
‘‘fast’’ drivers. Let us discuss the physical meaning of t
order parameterh in detail considering individually the free
flow, synchronized mode, and jammed traffic~Fig. 2!.

A. Physical meaning of the order parameterh
and its governing equation

When vehicles move on a multilane highway witho
changing the lanes they interact practically with the nea
neighbors ahead only and, so, there should be no inte
correlations in the vehicle flow at different lanes. Therefo
although under this condition the traffic flow can exhib
complex behavior, for example, the ‘‘stop-and-go’’ wav
can develop, it is actually of a one-dimensional nature.
particular, the drivers that would prefer to move faster th
the statistically mean driver will bunch up forming the pl
toons headed by a relatively slower vehicle. When the c
begin to change lanes for overtaking slow vehicles the
ensembles at different lanes will affect one another. The c
of this interaction is due to that a car during a lane cha
maneuver occupies, in a certain sense, two lanes sim
neously, affecting the cars moving behind it in both t
lanes. Figure 2~b! illustrates this interaction for cars 1 and
through car 4 changing the lanes. The drivers of both ca
and 2 have to regard car 4 as the nearest neighbor and
their motion will be correlated during the given maneuv
and after it during the relaxation timet8. In the same way
car 1 is affected by car 3 because the motion of car 4 dire
depends on the behavior of car 3. The more frequently l
changing is performed, the more correlated traffic flow th
is on a multilane highway. Therefore, it is reasonable to
troduce the order parameterh being the mean density of suc
car triplets normalized to its maximum possible for the giv
highway and to regard it as a measure of the multilane c
relations in the vehicle flow.

On the other hand, the order parameterh introduced in
this way can be regarded as a measure of the vehicle arra
ment regularity. Let us consider this question in detail for
free flow, synchronized mode, and jammed traffic individ
ally. In the free flow the feasibility of overtaking makes th

FIG. 2. Schematic illustration of the car arrangement in the v
ous phases of traffic flow and the multilane vehicle interact
caused by car overtaking.
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vehicle arrangement more regular because of platoon d
pation. So as the order parameterh grows the free traffic
becomes more regular. Nevertheless, in this case the de
of the car mulitlane triplets remains relatively low,h!1,
and the vehicle ensembles should exhibit weak correlatio
Whence it follows also that the mean car velocityq is an
increasing function of the order parameterh in the free flow.
In the jammed motion@Fig. 2~c!# leaving current lanes is
hampered because of lack of room for the maneuvers. So
car ensembles at different lanes can be mutually indepen
in spite of individual complex behavior. In the given case t
order parameter must be small, too,h!1, but, in contrast,
the car mean velocity should be a decreasing function oh.
In fact, for highly dense traffic any lane change of a c
requires practically that the neighbor drivers decelerate g
ing a place for this maneuver.

Figure 3 illustrates the free flow↔ synchronized mode
transition. As the car density grows in free flow, the fa
drivers that at first overtake slow vehicles individually beg
to gather into platoons headed by more slow cars am
them but, nevertheless, moving faster than the statistic
mean vehicle@Fig. 3~a!#. The platoons are formed by driver
preferring to move as fast as possible keeping short he
ways without lane changing. Such a state of the traffic fl
should be sufficiently inhomogeneous and the vehicle he
way distribution has to contain a short headway spike
observed experimentally in@33#. Therefore, even at a suffi
ciently high car density the free flow should be characteriz
by weak multilane correlations and not too great values
the order parameterhf . The structure of these platoons
also inhomogeneous; they comprise cars whose driv
would prefer to move at different headways~for a fixed ve-
locity! under comfortable conditions, i.e., when the ca
moving behind a given car do not jam it or none of t
vehicles moving on the neighboring lanes hinders its mot
at the given velocity provided it changes the current lane.
when the density of vehicles attains sufficiently high valu
and their mean velocity decreases remarkably with respe

i-
n

FIG. 3. Schematic illustration of the alteration in the vehic
arrangement near the free flow↔ synchronized mode phase tran
sition.
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6086 PRE 62IHOR A. LUBASHEVSKY AND REINHARD MAHNKE
the velocity on the empty highway some of the fast driv
can decide that there is no reason to move so slowly at s
short headways requiring strain. Then they can either o
take the car heading the current platoon by changing la
individually or leave the platoon and take vacant places@Fig.
3~a!#. The former has to increase the multilane correlatio
and, in part, to decrease the mean vehicle velocity beca
the other drivers should give place for this maneuvers i
sufficiently dense traffic flow. The latter also will decrea
the mean vehicle velocity because these places were va
from the standpoint of sufficiently fast drivers only but n
from the point of view of the statistically mean ones, pref
ring to keep longer headways in comparison with the plato
headways. Therefore, the statistically mean drivers hav
decelerate, decreasing the mean vehicle velocity. The
maneuver types make the traffic flow more homogene
dissipating the platoons and smoothing the headway di
bution @Fig. 3~b! and the low fragment#. Besides, the single
vehicle experimental data@33# show that the synchronize
mode is singled out by long-distant correlations in the
hicle velocities, whereas the headway fluctuations are co
lated only on small scales, which justifies the assumption
the synchronized mode being a more homogeneous
than the free flow. We think that the given scenario descri
the synchronized mode formation which must be charac
ized by a great value of the order parameter,hs.hf , and a
lower velocity in comparison with the free flow at the sam
vehicle density.

In addition, whence it follows that first the left bounda
of the headway distribution should be approximately
same for both the free flow and the synchronized mode n
the phase transition, which corresponds to the experime
data@33#. Second, since in this case the transition from
free flow to the synchronized mode leads to the decreas
the mean velocity, the fast driver will see no reason to a
their behavior and to move forming platoons again until
vehicle density decreases and the mean velocity gr
enough. It is reasonable to relate this characteristics to
experimentally observed hysteresis in the free flow↔ syn-
chronized mode transition@12–14#. Third, for a car to be
able to leave a given platoon the local vehicle arrangemen
the neighboring lane should be of special form and when
event of the vehicle rearrangement occurs its following e
lution depends also on the particular details of the neighb
ing car configuration exhibiting substantial fluctuation
Therefore, the synchronized mode can comprise a g
amount of local metastable states and corresponds to a
tain two-dimensional region on the flow-density plane (j r
plane! rather than a linej 5q(r)r, which matches the ex
perimental data@11# and the modern notion of the synchr
nized mode nature@7–9#. This feature seems to be similar
that met in physical media with local order, for example,
glasses where phase transitions are characterized by a
range of controling parameters~temperature, pressure, etc!
rather than their fixed values~see, e.g.,@41#!.

This uncertainty of the synchronized mode, at least qu
tatively, may be regarded as an effect of the internal fluct
tions of the order parameterh and at the first step we wil
ignore them assuming the order parameterh to be deter-
mined in a unique fashion for fixed values of the vehic
s
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densityr and the mean velocityv. Thus for a uniform ve-
hicle flow we write

t
dh

dt
52F~h,r,v !, ~11!

wheret is the time required of drivers coming to the dec
sion to begin or stop overtaking maneuvers and the func
F(h,r,v) possesses a single stationary pointh5h(r,v) be-
ing stable and, thus,

]F

]h
.0. ~12!

The latter inequality is assumed to hold for all the values
the order parameter for simplicity. We note that Eq.~11! also
allows for the delay in the driver response to changes on
road. However, in contrast with models similar to Eqs.~1!
and ~2!, here this effect is not the origin of the traffic flow
instability and, thus, its particular description is not so c
cial. Moreover, as discussed in the Introduction, the timet
characterizes the delay in the driver decision concerning
lane changing but not the control over the headway, enab
us to assumet@t8.

The particular valueh(v,r) of the order parameter result
from the compromise between the danger of the accid
during changing lanes and the will to move as fast as p
sible. Obviously, the lower the mean vehicle velocityv is for
a fixed value ofr, the weaker is the lane changing dang
and the stronger is the will to move faster. Besides,
higher the vehicle densityr is for a fixed value ofv, the
stronger is this danger~here the will has no effect at all!.
These statements enable us to regard the dependenceh(v,r)
as a decreasing function of both the variablesv, r ~Fig. 4!
and we take into account the inequality~12! to write

]F

]v
.0,

]F

]r
.0, ~13!

with the latter inequality stemming from the danger effe
only.

Equation~11! describes actually the behavior of the dri
ers who prefer to move faster than the statistically me
vehicle and whose readiness for risk is greatest. Exactly
group of drivers governs the value ofh. There is, however,
another characteristic of the driver behavior; it is the me
velocity v5q(h,r) chosen by thestatistically averaged
driver also taking into account the danger resulting from
frequent lane changing by the fast drivers. This characteri
is actually the same as the one discussed in the Introduc

FIG. 4. Qualitative sketches of the order parameterh as a func-
tion of the vehicle mean velocityv and the densityr specified by
the behavior of individual drivers.
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PRE 62 6087ORDER-PARAMETER MODEL FOR UNSTABLE . . .
but also depends on the order parameterh. So, as a function
of r it meets conditions~4!. Concerning the dependence
q(h,r) on h we can state that generally this function shou
be increasing for small values of the car density,r!r0,
because in the given case the lane changing practic
makes no danger to traffic and all the drivers can overt
vehicles moving at lower speed without risk. By contra
when the vehicle density is sufficiently high,r&r0, only the
most ‘‘impatient’’ drivers permanently change the lanes
overtaking, making an additional danger to the most par
the other drivers. Therefore, in this case the velocityq(h,r)
has to decrease as the order parameterh increases. For cer
tain intermediate values of the vehicle density,r'rc , this
dependence is to be weak. Figure 5 shows the velo
q(h,r) as a function ofh for different values ofr, where, in
addition, we assume the effect of the order parameteh
P(0,1) near the boundary points is weak and we set

]q

]h
50 at h50 and h51. ~14!

We will ignore the delay in the relaxation of the mea
velocity to the equilibrium valuev5q(h,r) because the
corresponding delay time characterizes the driver con
over the headway and should be short, as already discu
above. Then the governing equation~11! for the order pa-
rameterh can be rewritten in the form

t
dh

dt
52f~h,r!; f~h,r!5

def

F@h,r,q~h,r!#. ~15!

For the steady-state uniform vehicle flow the solution of
equationf(h,r)50 specifies the dependenceh(r) of the
order parameter on the car density. Let us now study
properties and stability.

B. Nonmonotony of theh„r… dependence
and the traffic flow instability

To study the local characteristics of the right-hand side
Eq. ~15! we analyze its partial derivatives

]f

]h
5

]F

]h
1

]F

]v
]q

]h
, ~16!

]f

]r
5

]F

]r
1

]F

]v
]q

]r
. ~17!

FIG. 5. A qualitative sketch of the mean vehicle velocity vs t
order parameterh for several fixed values of the vehicle densityr.
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As mentioned above, the value of]F/]r is solely due to the
danger during changing lanes, so this term can be igno
until the vehicle densityr becomes sufficiently high. In othe
words, in a certain regionr,rh&r0 the derivative]f/]r
;(]F/]v)(]q/]r),0 by virtue of Eqs.~4! and ~13!. So,
the local behavior of the functionh(r) @meeting the equality
df50 and, thus,dh/dr52(]f/]r)(]f/]h)21# depends
directly on the sign of the derivative]f/]h; it is increasing
or decreasing for]f/]h.0 or ]f/]h,0, respectively.

For long-wave perturbations proportional to exp$ikx% of
the car distribution on a highway, the densityr can be
treated as a constant at the lower order ink. Therefore, ac-
cording to Eq.~15! the steady-state traffic flow is unstable
]f/]h,0.

Due to Eqs.~12! and~14! the first term on the right-hand
side of Eq.~16! is dominant in the vicinity of the linesh
50 andh51, thus in this region the curveh(r) is increas-
ing and the stationary state of the traffic flow is stable. F
r,rc the value]q/]h.0 ~Fig. 5!; therefore, the whole
region $0,h,1,0,r,rc% corresponds to the stable ca
motion. However, forr.rc there can be a region of th
order parameterh where the derivative]f/]h changes the
sign and the vehicle motion becomes unstable. Indeed,
solution v5h(h,r) of the equationF(h,r,v)50 can be
regarded as the mean vehicle velocity controlled by the
drivers and is a decreasing function ofh because of]h/]h
52(]F/]h)/(]F/]v)21. So, once such ‘‘active’’ drivers
start to change lanes to move faster, they will do this
frequently as possible especially if the mean velocity d
creases, which corresponds to a considerable increaseh
for a small decrease inv. So, it is quite natural to assum
that the value of]h/]h for r.rc is sufficiently small and

]f

]h
5

]F

]v S ]q

]h
2

]h

]h D,0. ~18!

Under these conditions the instability region does exist,
curveh(r) can look like S~Fig. 6!, and its decreasing branc
corresponds to the unstable vehicle flow. The lower incre
ing branch matches the free flow state of the car moti
whereas the upper one should be related to the synchron
mode because it is characterized by the order parameter c
ing to unity.

FIG. 6. The region of the traffic flow instability in thehr plane
and the form of the curveh(r) displaying the dependence of th
order parameter on the vehicle density. The plot is a qualita
sketch.
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C. Hysteresis and the fundamental diagram

The obtained dependenceh(r) actually describes the
first-order phase transition in the vehicle motion. Inde
when increasing the car density exceeds the valuer1 the free
flow becomes absolutely unstable and the synchron
mode forms through a sharp jump of the order parameter
however, after that the car density decreases the sync
nized mode will persist until the car density attains the va
r2,r1. It is a typical hysteresis and the region (r2 ,r1) cor-
responds to the metastable phases of traffic flow.

Let us now discuss a possible form of the fundamen
diagram j 5 j (r) showing the vehicle fluxj 5rq@r# as a
function of the car densityr, where, by definition,q@r#
5q@h(r),r#. It should be pointed out that here we confi
our consideration to the region of not too large values of
car density,r,rh , where the free flow↔ synchronized
mode transition takes place. The synchronized m
↔ jammed traffic transition will be discussed below. Figu
7~a! displays the dependenceq(h,r) of the mean vehicle
velocity on the densityr for the fixed limit values of the
order parameterh50 and 1. For small values ofr these
curves practically coincide with each other. As the vehi
densityr grows and until it comes close to the critical valu
rc when the lane change danger becomes substantial
velocity q(1,r) practically does not depend onr. So at the
point rc at which the curvesq(1,r) andq(0,r) meet each
other, q(1,r) is to exhibit a sufficiently sharp decrease
comparison with the latter one. Therefore, on one hand,
function j 1(r)5rq(1,r) has to be decreasing forr.rc .
On the other hand, at the pointrc for h!1 the effect of the
lane change danger is not extremely strong; it only makes
lane change ineffective,]q/]h'0 ~Fig. 5!. So, it is reason-
able to assume the functionj 0(r)5rq(0,r) increases nea
the point rc . Under the adopted assumptions the relat
arrangement of the curvesj 0(r), j 1(r) is demonstrated in
Fig. 7~b!, and Fig. 7~c! shows the fundamental diagram
traffic flow resulting from Figs. 6 and 7~b!.

FIG. 7. The mean vehicle velocity~a! and the vehicle flux~b! vs
the vehicle density for the limit values of the order parameteh
50 andh51 as well as the resulting fundamental diagram~c!. The
plot is a qualitative sketch.
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Concluding the present section we note that in the giv
description of the driver behavior governing the order p
rameterh the vehicle flux j (h,r)5rq(h,r) is an external
characteristic of traffic flow. So, the obtained form of th
fundamental diagram does not follow directly from the d
veloped model, but can be interpreted sufficiently reas
able. It can be rigorously justified if the critical pointrc
corresponds to the maximum of the fluxj (h* ,r) for a cer-
tain fixed valueh* of the order parameter. In other word
when the road capacity is exhausted and the following
crease in the vehicle density leads to a decrease in the
hicle flux the drivers divide into two groups; the majori
prefer to move at their own lanes whereas the most ‘‘im
tient’’ drivers change the lanes as frequently as possi
giving rise to the traffic instability. This problem, howeve
deserves an individual investigation.

III. PHASE COEXISTENCE.
DIFFUSION-LIMITED CLUSTER MOTION

The preceding section has considered uniform traffic flo
so we analyzed actually the individual characteristics of
free flow and the synchronized mode. In the present sec
we study their coexistence, i.e., the conditions under whic
car cluster of finite size forms. This problem, however,
quires that the traffic flow model be defined concrete
Therefore, in what follows we will consider a certain simp
model which illustrates the characteristic features of the
cluster self-organization without complex mathematical m
nipulations.

As before, the model under consideration assumes
mean velocity relaxation to be immediate and modifies
governing equation~15! in such a way as to ascribe the ord
parameterh to a local car group. In other words, we descri
the vehicle flow by the Lighthill-Whitham equation with dis
sipation~see, e.g.,@42# and also the Introduction!, we replace
the time derivative in Eq.~15! by the particle derivative, and
we take into account that the order parameter cannot exh
substantial variations over scalesl;u1/2t&v0t (u is the ve-
locity variance,v0 is the typical car velocity in the free
flow!. Namely, we write

]r

]t
1

]@rq~h,r!#

]x
5D

]2r

]x2
, ~19!

tF]h

]t
1q~h,r!

]h

]xG5L̂$h%2f~h,r!1j~x,t !. ~20!

Let us discuss the meaning of the particular terms of
given model. The Burgers equation~19!, as already dis-
cussed in Introduction, allows for the fact that drivers gove
their motion taking into account not only the behavior of t
nearest cars, but the state of traffic flow inside the whole fi
of their front view of length. The effective diffusivityD can
be estimated asD;L* v0, whereL* @ l is a front distance
looked through by drivers assumed to be much greater t
the scalel, so

Dt; lL * @ l 2. ~21!

The functionf(h,r) is of the form
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f~h,r!5
def

h~12h!@a~r!2h#, ~22!

where

a~r!5H 1 for r,rc

~rc1D2r!/D for rc,r,rc1D

0 for r.rc1D.

It describes such a driver behavior thath50 andh51 are
the unique stable values of the order parameter forr,rc and
r.rc1D, respectively, whereas forrc,r,rc1D the
points h50, h51 are both locally stable and there is a
additional unstable stationary point, namely,h5a(r). The
term

L̂$h%5
def

l 2
]2h

]x2
1

l

A2

]h

]x
~23!

governs spatial variations in the fieldh(x,t) and takes into
account that drivers mainly follow the behavior of cars
front of them and cars moving at the rear cannot essent
affect them. The mean car velocity depends onh andr as

rq~h,r!5
def

rq0~12h!1@rcq02n~r2rc!#h. ~24!

The last term on the right-hand side of Eq.~20! characterizes
the random fluctuations in the order parameter dynamics

^j~x,t !&50, ~25!

^j~x,t !j~x8,t8!&5s2l td~x2x8!d~ t2t8!, ~26!

wheres is their dimensionless amplitude. Expressions~22!
and~24! give theh(r) dependence and the fundamental d
gram shown in Fig. 8 simplifies the one presented in Fig

If we ignore the random fluctuations of the order para
eterh, i.e., sets50, then the model~19!,~20! will give us an
artificially long delay ~much greater thant) in the order
parameter variations from, for example, the unstable p
h50 to the stable pointh51. Such a delay can lead to
meaningless great increase of the vehicle density in the
flow without phase transition to congestion. In order to av
this artifact and to allow for the effect of real fluctuations
the driver behavior we also will assume the amplitudes to
obey the condition@43#:

FIG. 8. The dependenceh(r) and the fundamental diagram o
traffic flow described by the model~19!,~20!.
ly

-
.
-

t

ee
d

S l

L*
D 5/4

&s!1 ~27!

(s!1, because, otherwise, the traffic flow dynamics wou
be totally random!. It should be noted that small random
variations of the order parameterh near the pointsh50, h
51 going into the regionsh,0 andh.1, respectively, do
not come into conflict with its physical meaning as the me
sure of the car motion correlations. Indeed, the chosen va
h50 andh51 can describe a renormalization of real corr
lation coefficientsh̃5h̃1.0, h̃2,1.

According to Eq.~20!, for the order parameterh the char-
acteristic scale of its spatial variations isl, so, the layerIh
separates the regions whereh'0 and 1 is of thickness abou
l. Due to inequality~21! the car density on such scales can
treated as constant. Therefore, the transition regionLr be-
tween practically the uniform free flow and the conges
phase is of thickness determined mainly by spatial variati
of the vehicle density and on such scales the layerIh can be
treated as an infinitely thin interface. In addition, the char
teristic time scale of the layerIh formation is aboutt,
whereas it takes about the timetr;D/v0

2;t(L* / l )@t for
the layerLr to form. Thereby, when analyzing the motion
wide car clusters we may regard the order parameter di
bution h(x,t) as quasistationary for a fixed value of the c
density r. Let us now consider two possible limits of th
layer Ih motion under such conditions.

A. Regular dynamics

In the region rc,r,rc1D until the value of a(r)
comes close to the boundariesh50 andh51 the effect of
the random fluctuations is ignorable. In this case by virtue
the adopted assumptions the solution of Eq.~20! that de-
scribes the layerIh moving at the speedu is of the form

h5
1

2 F11tanhS x2ut

l D G . ~28!

Here for the layerI01 of the free-flow→ synchronized mode
transition and for the layerI10 of the opposite transition~Fig.
9!

l015
2A2

hv
l , l10522A2hvl , ~29!

u015q02
Dv

2
2

l

A2hvt
@11hv22a~r i !#, ~30!

u105q02
Dv

2
2

l

A2t
@2hva~r i !2~hv21!#, ~31!

where we introduced the quantities

Dv5q~0,r i !2q~1,r i !,

hv5F11S tDv

2A2l
D 2G 1/2

1
tDv

2A2l
,
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6090 PRE 62IHOR A. LUBASHEVSKY AND REINHARD MAHNKE
andr i is the corresponding value of the car density inside
layersI01 andI10.

Expressions~30! and ~31! describe the regular dynamic
of the car cluster formation because the transition, for
ample, from the free flow to the synchronized phase a
certain pointx is induced by this transition at the neare
points. The dependence of the velocitiesu01 andu10 on the
local car densityr i is illustrated in Fig. 9. The characterist
velocities attained in this type of motion can be estimated

q02u;max$q0D/rc , l /t%,

so, under the adopted assumptions the regular dynamics
not allow for the sufficiently fast motion of the layersIh
upstream.

B. Noise-induced dynamics

As the car densityr tends to the critical valuesrc or rc
1D the value ofa(r) comes close to the boundariesa(rc)
51 anda(rc1D)50, and the pointh51 or h50 becomes
unstable, respectively. In this case the effect of the rand
fluctuations j(x,t) plays a substantial role. Namely, th
phase transition, for example, from the free flow to the s
chronized motion~for r'rc1D) is caused by the nois
j(x,t) and equiprobably takes place at every point of
region whereinr'rc1D rather than is localized near th
current position of the layerI01. Under these conditions th
motion of the layersIh can be qualitatively characterized b
an extremely high velocity in both the directions, which
illustrated in Fig. 9 by dashed lines.

We note that the noise-induced motion, in contrast to
regular dynamics, is to exhibit significant fluctuations in t
displacement of the layerIh as well as in its forms. This
question is, however, a subject for individual study.

C. Diffusion-limited motion of vehicle clusters

Let us now analyze the motion of a sufficiently large clu
ter that can form on a highway when the initial car dens
or, what is the same, the average car densityr̄ belongs to the

FIG. 9. The distribution of the order parameter and the car d
sity in the vicinity of the layersIh of the transition between the fre
flow and the synchronized phase as well as the velocity of t
motion vs the local valuesr i of the car density.
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metastable region,r̄P(rc ,rc1D). The term ‘‘sufficiently
large’’ means that the cluster dimensionL is assumed to be
much greater than the front distanceL* looked through by
drivers so they cannot look round the congestion as a wh
In this case a quasilocal description of traffic flow similar
the differential equations~19! and ~20! is justified.

Converting to the framey5x2ut moving at the cluster
velocity u, solving Eq.~19! individually for the free flow and
the synchronized phase, and treating the layersIh as infi-
nitely thin interfaces we get the following conclusion. With
the framework of the given model the car cluster moves
stream sufficiently fast, so the motion of the layersI01 and
I10 is governed by the noisej(x,t). In this case the values o
the car density at the layersI01 and I10 have to ber j'rc
1D andr f'rc , respectively. Thereby, the cluster veloci
u is mainly determined by the car redistribution governed
the diffusion-type processes. The latter feature is the rea
why we refer to the cluster dynamics under such conditio
as to the diffusion-limited motion. The transition regionL01
between practically the uniform free-flow state and the cl
ter contains the exponential increase of the vehicle den
inside the free-flow phase from the valuer f far from the
‘‘interface’’ I01 up to r j'rc1D at I01,

r5r f1~r j2r f !exp$qfy%,

whereqf5(q01uuu)/D;1/L* and the frame$y% is attached
to the interfaceI01. The transition regionL10 from the syn-
chronized phase to the uniform free flow is to be localiz
inside the car cluster. So, it is characterized by the decre
in the vehicle densitydr}exp$qjy%, whereqj5(uuu2n)/D,
and the vehicle free flow leaving the cluster is uniform at
its points@Fig. 10~a!#.

The cluster velocity is directly determined by the motio
of the interfaceI01. Therefore, assuming also the clust
dimensionL large in comparison withL* , from Eq.~19! we
get the expression of the same form as the Lighth
Whitham formula~10! relating the cluster velocityu and the
vehicle flux characteristics on both sides of the layerL01.
Whence it follows that at the first approximation

u'2n, ~32!

the valueqj50, and the vehicle cluster is of the form show
in Fig. 10~a! under the name ‘‘mesocluster.’’ Assuming th
total number of cars on the highway of lengthL rd fixed we
get the expression for the mesocluster dimensionL,

L52L rd

r̄2rc

D
. ~33!

-

ir

FIG. 10. The possible forms of the car clusters and their dim
sion vs the mean car density.
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PRE 62 6091ORDER-PARAMETER MODEL FOR UNSTABLE . . .
However, this result is justified only for sufficiently sma
values of (r̄2rc)/D!1, when the cluster dimension is no
too large,Lqj!1 ~nevertheless,L@L* ). Exactly for this
reason we refer to such clusters as mesoscopic ones. In
to study the opposite limit,Lqj@1, we have to take into
account that the valuer f is not rigorously equal torc but
practically is the rootr f* .rc of the equationu10(r f* )
52n. In this case the Lighthill-Whitham formula~10! gives
the expression

u.2Fn1~q01n!
r f* 2rc

D G ,
leading to the following estimates of the thickness 1/qj of the
transition regionL10:

1/qj;
DD

~q01n!~r f* 2rc!
;L*

D

~r f* 2rc!
.

The form of such a wide cluster is shown in Fig. 10~a!; its
dimension is

L5L rd

r̄2rc

D
~34!

and the region of the mean car density corresponding to
limit is specified by the inequality

r* 2rc

D
@

L*

L rd

D

~r f* 2rc!
. ~35!

The resulting dependence of the cluster dimension on
mean car densityr̄ is illustrated in Fig. 10~b!.

IV. SYNCHRONIZED MODE ^ JAM PHASE
TRANSITION: BRIEF DISCUSSION

In Sec. II we have considered the phase transition
tween the free flow and the synchronized mode. Howe
according to the experimental data@12# there is an additiona
phase transition in traffic flow regarded as the transition
tween the synchronized motion and the jammed ‘‘stop-a
go’’ traffic. This transition occurs at extremely high vehic
densitiesr coming close to the limit valuer0.

The present section briefly demonstrates that the de
oped model for the driver behavior also predicts a sim
phase transition at high car densities. To avoid possible m
understandings we, beforehand, point out that the mode
its present form cannot describe details of the synchron
mode↔ jam transition because we have not taken into
count the delay in the driver response to variations in he
way. The latter is responsible for the formation of the sto
and-go pattern, so to describe the jammed traffic
multilane highways we at least should combine a govern
equation for the order parameterh and a continuity equation
similar to Eqs.~20! and ~19! with an equation for the ca
velocity relaxation similar to Eq.~2!. This question, how-
ever, is worthy of individual study. Besides, the approxim
tions used in Sec. III to characterize the synchronized m
at the car densities nearrc do not hold here.
der
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In Sec. II we have studied the dependence of the or
parameterh on the car density ignoring the first term on th
right-hand side of Eq.~17! caused by the danger of lan
changing. This assumption is justified when the car densit
not too high. In extremely dense traffic flow, when the c
density exceeds a certain value,r.rh&r0, changing lanes
becomes sufficiently dangerous and the functionF(h,v,r)
describing the driver behavior is to depend strongly on
vehicle density in this region. In addition, the vehicle moti
becomes sufficiently slow. Under such conditions the form
term on the right-hand side of expression~17! should be
dominant and, thus,]f/]r.0. Therefore, the stable vehicl
motion corresponding to]f/]h.0 matches the decreasin
dependence of the order parameterh(r) on the vehicle den-
sity r for r.rh . So, as the vehicle densityr increases the
curveh(r) can again go into the instability region~in thehr
plane!, which has to give rise to a jump from the synchr
nized mode with greater values of the order parameter
new traffic state with its less values~Fig. 11!. Obviously, this
transition between the two congested phases also exhibit
same hysteresis as the one described in Sec. II.

We identify the latter traffic state with the jammed vehic
motion. Indeed, in extremely dense traffic lane changing
practically depressed, making the car ensembles at diffe
lanes independent of one another. So, in this case veh
flow has to exhibit weak multilane correlations and w
should ascribe to it small values of the order parameterh. It
should be noted that the experimental single-vehicle d
@33# demonstrates strong correlations of variations in
traffic flux and the car density for both the free flow and t
stop-and-go motion. By contrast, the synchronized mod
characterized by small values of the cross-covariance
tween flow, speed, and density. In other words, for the f
flow and the stop-and-go motion the traffic fluxj 5qr
should depend directly on the car densityr, as it must in the
present model if we seth50.

Finalizing the present section we point out that the giv
model treats the jammed phase as a ‘‘faster’’ vehicle mot
than the synchronized mode at thesamevalues of the order
parameter. There is no contradiction with the usual view
the synchronized mode as a high flux traffic state. The la
corresponds to the traffic flow at the vehicle densities n
the free flow↔ synchronized mode phase transition rath
than close to the limit valuer0. Besides, an ordinary driver’s

FIG. 11. The instability region and theh(r) dependence de
scribing the transition from the synchronized~congested! phase to
the heavy congested phase~a jam! in the region of high car density
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6092 PRE 62IHOR A. LUBASHEVSKY AND REINHARD MAHNKE
experience prompts that a highly dense traffic flow can
blocked at all if one of the cars begin to change lanes. N
ertheless, in order to describe, at least qualitatively, the
features of the synchronized mode↔ stop-and-go waves
phase transition a more sophisticated model is required.
present description only relates it to the instability of t
order parameter at high values of the vehicle density.

Besides, the present analysis demonstrates also the
monotonic behavior of the order parameter as the car den
increases even if we ignore the hysteresis regions and f
our attention on the stable vehicle flow regions only.
should be noted that a similar nonmonotonic dependenc
the lane change frequency on the car density as well as
platoon formation has been found in the cellular automa
model for two-lane traffic@44#.

V. CLOSING REMARKS

To conclude this paper we recall the key points of t
developed model. We have proposed an original mac
scopic approach to the description of multilane traffic flo
based on an extended collection of the traffic flow state v
ables. Namely, in addition to such characteristics as the
densityr and mean velocityv being actually the zeroth an
first moments of the ‘‘one-particle’’ distribution function, w
introduce a new variableh called the ‘‘order parameter.’’ It
stands for theinternal correlations in the car motion alon
different lanes that are due to lane-changing maneuvers.
order parameter, in fact, allows for the essentially ‘‘man
body’’ effects in the car interaction so it is treated as
independent-state variable.

Taking into account the general properties of the dri
behavior we have stated a governing equation for the o
parameter. Based on current experimental data@11–14,33#
we have assumed the correlations in the car motion on m
tilane highways to be due to a small group of ‘‘fast’’ driver
i.e. the drivers who move substantially faster than the sta
tically mean vehicle continuously overtaking other ca
These ‘‘fast’’ cars, on one hand, increase individually t
total rate of vehicle flow but, on the other hand, make
accident danger greater and, thus, cause the statistically m
driver to decrease the velocity. The competition of the t
effects depends on the car density and the mean velocity
as shown, can give rise to the traffic flow instability. It tur
out that the resulting dependence of the order paramete
the car density describes in the same way the experimen
observed sequence of free flow↔ synchronized motion
↔ jam phase transitions typical for traffic flow on highwa
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@12#. Besides, we have shown that both these transiti
should be of the first-order type and exhibit hysteres
matching the experimental data@12–14#. The synchronized
mode is characterized by a large value of the order par
eter, whereas the free flow and the jam match its small v
ues. The latter feature enables us to treat the jam as a p
comprising the vehicle flows at different lanes with we
mutual interaction because of the lane changing being
pressed.

In order to illustrate the characteristic features of the
clusters that self-organize under these conditions we h
considered a simple model that deals only with the evolut
of the car density and the order parameter. In particular,
shown that in the steady state the car density inside the c
ter and the free flow being in equilibrium with the cluster,
well as the velocity at which the cluster moves upstream,
fixed and determined by the basic properties of the tra
flow. On the contrary, the size of the car cluster depends
the initial conditions.

Finally, we would like to underline that the develope
model takes into account only one effect that causes the
fic flow instability. The other, the delay in the driver contr
over the headway, seems to be responsible for the s
and-go waves in the jammed phase~for a review of the con-
tinuum description of this phenomena see, e.g.,@24,25#!. So,
combining the two approaches into one model it enable
detailed description of a wide class of phenomena occur
in the transitions from free flow to the heavy congest
phase on highways. In this way the order parameter mo
could also describe the formation of a local jam on a hig
way whose boundaries comprise both of the phase tra
tions. In the present form it fails to do this because the f
flow and the jammed traffic are characterized by small val
of the order parameter.

Concerning a possible derivation of the order-parame
model from the gas-kinetic theory we note that the appe
ance of the fast driver platoons demonstrates a substa
deviation of the car distribution function from the monoton
quasiequilibrium form. So, to construct an adequate sys
of equations dealing with the moments of the distributi
function a more sophisticated approximation is required.
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